Get paid to earn a PhD in STEM education at TU Dublin

Would you like four years of PhD tuition/registration fees, with a €18,500 annual stipend and annual project budget of €2,600? The goal is to research STEM education and earn a PhD at Technological University Dublin (TU Dublin), in Ireland’s capital city. Applicants for this project are required to complete an Expression of Interest and email it to both shannon.chance@tudublin.ie  AND phd@tudublin.ie. The application deadline is October 14, 2021.

Specifically, TU Dublin’s Research Scholarship Programme 2021 awarded me funding to hire a PhD researcher/student to study the topic of “Supporting Diversity in STEM by Enhancing Problem-Based Learning (PBL) Practices”. EU and non-EU citizens are welcome to apply, but those coming from outside the EU will need to obtain proper visas to study and work in Ireland. Registration Fees/Tuition each year would cost €4,500 (EU full-time) or €9,000 (non-EU full-time) but are completely covered, meaning that this grant is worth €102,400-€120,400. The stipend and project costs “will be paid annually, based upon successful completion of the annual assessment by the student”.

Applicants must have obtained a minimum of a 2.1 honours degree (level 8), or equivalent, in a relevant (e.g, STEM or social science) subject. A Master’s degree and/or some prior experience in qualitative or quantitative research is desirable but not essential. The ideal candidate will be highly self-motivated, with keen interest in STEM education and theories on learning and teaching and the ability to work both independently and collaboratively. We welcome applications from candidates from diverse backgrounds and from anywhere in the world. Applicants must meet the minimum English language requirements. Non-Irish can convert thier qualifications using an online conversion calculator (e.g., the US equivalent would be a four-year bachelor’s with B+ or better GPA).

What are we studying?

Our Research Question is: What challenges do women face with collaborative, peer-to-peer and Problem Based Learning while studying engineering and other STEM courses at university, and how do they deal with these challenges?

Why are we doing this?

Across engineering in Ireland, skills shortages represent “a major concern” and “barrier” to growth, and “the continuing gender gap requires greater attention and action”[i].Addressing shortfalls and increasing diversity requires shifting the culture of science, technology, engineering, and maths (STEM) and STEM learning – it must start with understanding the experiences of the students who enrol in STEM.

[i] Engineers Ireland. (2020). Engineering 2020: A barometer of the profession in Ireland. https://www.engineersireland.ie/LinkClick.aspx?fileticket=QIJJmhwkgSs%3D&portalid=0&resourceView=1

How will we do it?

The proposed mixed methods study involves phenomenological analysis of 71 existing interview transcripts, complemented by a quantitative survey of STEM students to identify patterns across TU Dublin. These longitudinal data provide a unique window into students’ experience of engineering and the active, inquiry-driven, Problem-Based Learning (PBL) used at TU Dublin.

I’ll be the lead supervisor for this PhD researcher, and the advisory supervisor will be Professor Brian Bowe. I’ve provided the Detailed Project Description in the body of this post. A brief description of the project that is being advertised by the University is provided here:

The full proposal that I submitted for funding (linked below) provides details about both of the supervisors, about strategic alignment with organizational and governmental goals, and how this project will enhance research capacity. I’ve also provided a few details at the bottom of the post about terms of funding. Many thanks to the people who gave input and advice on my application: Brian Bowe, Oluwasegun Seriki, Clare Eriksson, Marek Rebow and a consultant Marek secured.

Here’s a link to the the award letter, with the evaluation scores and comments:

Detailed Project Description

In 2020, Irish firms aimed to hire 5,152 engineers but 91% of engineering leaders listed skills shortages as “a major concern” and “barrier” to growth (Engineers Ireland, 2020). In Ireland today, more students are choosing STEM studies at second level, but many don’t continue into STEM higher education and “the continuing gender gap requires greater attention and action – in Ireland and internationally” (Engineers Ireland, 2020).

‘Pipeline’ or ‘conversion’ rates – persistence to graduation and into STEM careers of students who do enrol – are an issue. Globally, half of all students starting in engineering exit the major within a year[i] and in Ireland “drop-out rates in some third-level STEM courses [are] hitting 80%”[ii]. Moreover, most who graduate in engineering are male; in Ireland, men account for over 80% of all graduates in engineering, manufacturing and construction[iii]. Today’s culture of engineering study and work is largely shaped by males, and this may discourage some prospective applicants from joining the field.

Prior research suggests experiential, Problem-Based Learning (PBL) increases student engagement and helps address reasons women avoid STEM subjects[iv], [v], [vi]. Yet, task allocation and peer evaluation in teams continue to reflect gender bias, even when students do not recognize inequity[vii], [viii]. Time and project management, group coordination, and communications often fall to women – and often go unrecognized[ix]. Such dynamics can influence students’ perception of how they fit, if they belong, and whether they should stay in engineering. Engineering culture is often described as “chilly” to those who don’t fit the engineering stereotype[x]. Women who experience an unwelcoming environment have shown less commitment to stay in STEM programs than those who feel accepted[xi]. Although women who enter STEM courses are typically high achievers with strong self-confidence, their experiences can cause significant drops in their confidence levels, especially in their first two years[xii]. A US study found female participants felt dismissed, ignored, and unacknowledged when working in small groups of men in both work and academic settings[xiii]. Profanity, semi-sexual double entendre, and violent metaphors used by male faculty and students in engineering classrooms, although typically not intended to offend, contribute to a chilly climate[xiv].

PBL, which inherently involves group work, is promoted at TU Dublin by the Learning, Teaching and Technology Centre (LTTC), and so it is important to assess how well the pedagogy is working here. This study will investigate women’s experiences with PBL and other forms of collaborative peer-to-peer learning in engineering at TU Dublin, compare and contrast this with experiences of women from other engineering schools in Europe, and assess how the PBL experience changed over time for the Dublin-based women. This will be assessed via qualitative, phenomenological analysis of existing interview data. Findings will be extended via a survey of women in STEM at TU Dublin. 

Addressing shortfalls and increasing diversity requires shifting the culture of STEM and STEM learning – it must start with understanding the experiences of STEM students. The First Time Supervisor (FTS applicant) has amassed a valuable, longitudinal dataset to help answer the research question: What challenges do women face with collaborative, peer-to-peer and Problem Based Learning while studying engineering and other STEM courses at university, and how do they deal with these challenges?

Phenomenological interviews collected 2015-2019 via the applicant’s two MSCA fellowships[xv], [xvi], provide insight regarding the experiences of diverse female students (see Figure 1).

Methodologies. The proposed two-part mixed-methods study involves qualitative and quantitative components. Ethics clearance will be sought for each phase, as the second phase will be built upon findings of the first.

Composition of the dataset

In the first phase, extensive qualitative, phenomenological analysis of 71 existing interview transcripts will be conducted to assess how women have experienced PBL and other forms of collaborative learning (e.g., studying with peers in- and outside class) at TU Dublin across their four years of engineering studies and in other institutions in Portugal and Poland. The TU Dublin sample studied using formal PBL methods as part of their B.Eng. degree programs, starting from day one of their course – they include 24 of the 26 women on the inaugural cohort of TU Dublin’s common core engineering programme. These students completed their course in 2019 when the final set of interviews were conducted — analysis of these data is urgently needed. Additional interview data, collected in Poland and Portugal, provide a counterpoint to help assess the degree to which findings are localized to TU Dublin, versus representative of women’s experiences in PBL and collaborative learning more broadly. Phenomenology helps researchers investigate structures of consciousness and explore how specific phenomena are experienced from the first-person point of view. Van Manen’s interpretive, hermeneutic method will be used for analyzing interview data.[xvii] TU Dublin has expertise in this: Brian Bowe and Rob Howard have supervised theses using phenomenological methods[xviii], [xix], [xx] as well as closely related phenomenographical methods[xxi], [xxii], [xxiii]. As 33 prior doctoral theses using phenomenology in EER had sample sizes of 7-28 participants, this is an ambitious study, feasible explicitly because the qualitative data have already been collected and checked for accuracy.[xxiv]

In the second phase, a widescale survey will be conducted with women studying on four or more STEM courses that involve PBL across TU Dublin to assess the degree to which the qualitative findings hold true more broadly. Survey questions will be based on analysis from the phenomenological phase and piloted before use. Preliminary analyses conducted by the applicant indicate that many women in the engineering sample at TU Dublin had to adjust to working on teams with male students for the first time, as they came from single-sex schools. Many felt they had less preparation to start engineering than their male counterparts because their secondary schools provided limited access to physics and other engineering-related courses. The survey will provide a broader, and more current, perspective on these topics, to see if these barriers were experienced by many women in STEM at TU Dublin and assess what this might imply for Irish education policy. Specific sources of stress will be distilled from the interviews, and the follow-up survey will help assess how widespread these challenges have been. Thus, the follow-up survey will allow the PhD researcher to confirm and extend findings of the phenomenological phase.

Objectives of the studyare to:

  • Distil lessons from interviews and surveys to improve attraction, delivery, and retention in engineering and STEM education and employment
  • Assess the degree to which PBL pedagogies support women in engineering
  • Describe how women experience PBL in engineering at TU Dublin
  • Identify positive and negative aspects of the PBL experience
  • Make full use of the existing longitudinal interview data via in-depth analysis
  • Extend the value and generalizability of the findings via a quantitative survey
  • Assess data for gender, ethnic, and intersectional dimensions

Workplan (Figure 2). Upon arrival, the PhD researcher will be provided longitudinal data and guided in career planning, literature review, and target methodologies (Year 1) as a foundation for phenomenological analysis (Y2) and collection and analysis of survey data to achieve generalizability (Y3). The researcher will take part in the Graduate Research School’s structured PhD programme, annual Doctoral Symposia provided by the European Society for Engineering Education (SEFI), summer schools of the Australasian Association for Engineering Education (AAEE) or similar, and online workshops organized by the Research in Engineering Education Network (REEN) and other leading organizations for engineering education research (EER). The research will be disseminated via SEFI, regional symposia, and either the American Society for Engineering Education (ASEE) or REEN’s Symposium (REES) and journal articles, submitted to the European Journal of Engineering Education (EJEE) and Journal of Engineering Education (JEE).

Work Porgramme including Timetable, Ethical Considerations, Methods, and Dissemination

Feasibility, limitations and risks. The level of funding available, the existence of an extensive dataset, high-quality mentoring from the FTS applicant[xxv], [xxvi], [xxvii], and the supervising team’s track records help ensure this project can be completed on time[xxviii]. The sample size, considered large for qualitative research, will facilitate transferability but not generalizability; to address this limitation we propose rigorous methodologies and inclusion of a survey. Possible risksinclude a low return of surveys (however, ample qualitative data exist to make completion of a thesis viable) and Brian Bowe’s timetable (however, Rob Howard represents a viable backup). A primary risk is that the interview data will grow stale if they are not analyzed soon.

Originality. A longitudinal dataset of this depth is extremely rare in EER, and it presents unique opportunities. Using phenomenology is an innovative approach to study this topic [xxix] and having an extensive pre-existing dataset will allow time to extend qualitative findings via a wide-scale survey. Prior work of similar nature is US-based and quantitative in nature [iv], [xxx], tracking what happens (e.g., patterns of enrolment and retention), but failing to identify what keeps them engaged in the field or compels them to leave. The stressors they face and the why behind departures remains unclear so a deeper, more qualitative, study is needed. In early interviews, TU Dublin students reported some unique factors – a high proportion of single-sex schools, difficulty registering for physics in some schools – that warrant follow-up[xxxi], [xxxii].


[i] Mills, J.E. (2011). Reflections on the past, present and future of women in engineering. Australasian Journal of Eng. Educ., 17(3), 139-146.

[ii] O’Brien, C. (March 29, 2021). ‘Drop-out rates in some third-level STEM courses hitting 80%”. The Irish Times. https://www.irishtimes.com/news/education/drop-out-rates-in-some-third-level-stem-courses-hitting-80-1.4522466

[iii] Turcinovic, P. (2013). EU knowledge triangle: ‘Renaissance or ocean of papers?’ Donald School Journal of Ultrasound in Obstetrics and Gynecology, 7(3), 272-277.

[iv] Boedeker, P., Nite, S., Capraro, R. M., & Capraro, M. M. (2015, October). Women in STEM: The impact of STEM PBL implementation on performance, attrition, and course choice of women. In 2015 IEEE Frontiers in Education Conference (FIE) (pp. 1-8). IEEE.

[v] Marra, R.M., Rodgers, K.A., Shen, D., & Bogue, B. (2012). Leaving engineering: A multi-year single institution study. Journal of Engineering Education, 101(1), 6-27.

[vi] Kokkelenberg, E.C., & Sinha, E. (2010). Who succeeds in STEM studies? An analysis of Binghamton University undergraduate students. Economics Of Education Review, 29(6), 935-946.

[vii] Fowler, R. R., & Su, M. P. (2018). Gendered risks of team-based learning: A model of inequitable task allocation in Project-Based Learning. IEEE Transactions on Education, 61(4), 312-318.

[viii] Hirshfield, L. J. (2018). Equal but not equitable: Self-reported data obscures gendered differences in project teams. IEEE Transactions on Education, 61(4), 305-311.

[ix] Neumann, M. D., Lathem, S. A., & Fitzgerald-Riker, M. (2016). Resisting cultural expectations: Women remaining as civil and environment engineering majors. Journal of Women and Minorities in Science and Engineering, 22(2).

[x] Wyer, M., (2003). Intending to stay: Images of scientists, attitudes toward women, and gender as influences on persistence among science and engineering majors, J. Women Min. Sci. Eng., (9),1, 1716.

[xi] Wyer, M., (2003). Intending to stay: Images of scientists, attitudes toward women, and gender as influences on persistence among science and engineering majors, J. Women Min. Sci. Eng., (9), 1, 1716.

[xii] Brainard, S.G. and Carlin, L., (1998). A six-year longitudinal study of undergraduate women in engineering and science, J. Eng. Educ, (87),4, 369 – 375

[xiii] Wilkins-Yel, K. G., Simpson, A., & Sparks, P. D. (2019). Persisting despite the odds: Resilience and coping among women in engineering. Journal of Women and Minorities in Science and Engineering, 25(4).

[xiv] Tonso, K. (1996). “The Impact of Cultural Norms on Women,” Journal of Engineering Education, (85), 3, 217–225.

[xv] European Commission. (2016). Re-Engineering Europe’s STEM Pipeline. https://cordis.europa.eu/project/id/629388

[xvi] European Commission. (2019). Designing Engineers: Harnessing the Power of Design Projects to Spur Cognitive and Epistemological Development of STEM Students. https://cordis.europa.eu/project/id/747069

[xvii] van Manen, M., Researching lived experience1997, Ontario, Canada: The Althouse Press.

[xviii] Chari, D. (2014). What is nanoscience?‘-A hermeneutic phenomenological study of nanoscience researchers’ experiences.

[xix] Sloan, A. (2015) A Phenomenological Study of Computer Science Lecturers: Lived Experiences of Curriculum Design, Doctoral Thesis, Technological University Dublin. doi:10.21427/D7QC75

[xx] Bates, E. (2011). How do Apprentice Painters and Decorators on the Irish Standards Based Apprenticeship Experience their Learning? Dissertation. Technological University Dublin.

[xxi] Beagon, U. (2021) A Phenomenographic Study of Academics Teaching on Engineering Programmes in Ireland: Conceptions of Professional Skills and Approaches to Teaching Professional Skills, Doctoral Thesis, TU Dublin, 2021, DOI:10.21427/K4MD-2571

[xxii] Irving, P. (2010). A Phenomenographic Study of Introductory Physics Students: Approaches to their Learning and Perceptions of their Learning Environment in a Physics Problem-Based Learning Environment. Doctoral Thesis.Technological University Dublin. doi:10.21427/D7K888

[xxiii] Walsh, Laura. (2009). A phenomenographic study of introductory physics students: approaches to problem solving and conceptualisation of knowledge. Technological University Dublin. doi:10.21427/D73598

[xxiv] CHANCE, S., & Direito, I. (2018). Identification and preliminary review of doctoral theses in engineering education that have used phenomenological methods. In Proceedings of the 46th SEFI Annual Conference 2018. Creativity, innovation and entrepreneurship for engineering education excellence. Societe Europeenne pour la Formation des Ingenieurs (SEFI). Copenhagen, Denmark. http://discovery.ucl.ac.uk/10062437/1/Chance_SEFI%202018-ShannonChance-final%20paper-submitted.pdf

[xxv] CHANCE, S. (2021). An Editor’s Job is … sometimes a success! Ireland By Chance. https://shannonchance.net/2021/04/19/an-editors-job-is-sometimes-a-success/

[xxvi] CHANCE, S. (2021). A new doc is born: Dr Diana Adela Martin. Ireland By Chance. https://shannonchance.net/2020/12/17/diana-adela-martin/

[xxvii] CHANCE, S. (2019). Meet emerging research star: Carlos Mora. Ireland By Chance. https://shannonchance.net/2019/11/15/meet-emerging-research-star-carlos-mora/

[xxviii] CHANCE, S. (2021). Résumé & CV. Ireland By Chance. https://shannonchance.net/shannons-cv/

[xxix] CHANCE, S., & Direito, I. (2018). Identification and preliminary review of doctoral theses in engineering education that have used phenomenological methods. In Proceedings of the 46th SEFI Annual Conference 2018. Creativity, innovation and entrepreneurship for engineering education excellence. Societe Europeenne pour la Formation des Ingenieurs (SEFI). Copenhagen, Denmark. http://discovery.ucl.ac.uk/10062437/1/Chance_SEFI%202018-ShannonChance-final%20paper-submitted.pdf

[xxx] LaForce, M., Noble, E., & Blackwell, C. (2017). Problem-based learning (PBL) and student interest in STEM careers: The roles of motivation and ability beliefs. Education Sciences, 7(4), 92.

[xxxi] CHANCE, S. M., Bowe, B. & Duffy, G. (2016). Policy Implications of Irish Women’s Experiences in STEM Education. Association for the Study of Higher Education (ASHE) conference in Columbus, Ohio.

[xxxii] CHANCE, S. M., Eddy, P., & Bowe, B.  (2016). Implications for education policy: A comparative study of women’s experiences in engineering and physics education in Ireland and Poland. Joint conference of Irish Social Sciences Platform (ISSP) and National Economic and Social Council (NESC) in Dublin.


Some of the pertinent details from the TU Dublin Research Scholarship Programme 2021 handbook are:

Each award will provide a scholarship to support a full-time graduate research student and include a stipend of €18,500 and €2,600 for project costs. Funding is available for supervision of full-time students up to a maximum of 4 years for PhD students … and will be paid annually, based upon successful completion of the annual assessment by the student. 

15. Non-EEA students must comply with all immigration regulations as determined by the Department of Justice and Law Reform. 

16. Research students in receipt of funding must engage full-time in research. Although teaching, and other work, is considered a valuable experience, it should not exceed a total of 4 hours per week. 

19. Expenses may include: • project materials and consumables; • project equipment; • software and hardware critical for the proposed research; • a maximum limit of €1,000 for computers or laptops applies unless required for high- performance computing and all must be in line with TU Dublin IT procurement policy; • pay-as-you-go access to national research infrastructures; • archival research costs; • reasonable and vouched travel (use of own car without prior approval of the Head of the Graduate Research School and first class or business travel will not be considered) • reasonable and vouched hotel costs • reasonable and vouched subsistence (all subsistence must be vouched and per diems will not be considered.) Subsistence claims cannot exceed and must be in line with Government rates. • registration costs for conferences/workshops/meetings directly related to the award; • normal (not emergency/express) visa costs for travel to conferences/research events; • skills training directly related to the objective(s) of the award; • publishing and write-up costs, excluding proof-reading costs; ανd • reasonable travel and refreshment costs for subjects and volunteers in studies  

LSBU Sustainability conference on now, featuring Creativity research

London South Bank University (LSBU) has an event on this week called “Sustainability and Climate Action Events Series – Carbon, Climate, Energy and Resources” (for info and registration click here).

As I’m a Visiting Professor at LSBU, supervising Ph.D. student Thomas Empson who is one of the organizers of this event, I’m one of many in attendance. Thomas studies the role of creativity in creating sustainable design solutions. He looks at engineering and architecture. Thomas is also LSBU’s Sustainability Project Manager.

I’m so proud to be this researcher’s Ph.D. supervisor. He, Shushma Patel, and I have made an excellent team.

The week-long event kicked off earlier today and Thomas delivered an insightful presentation on his Ph.D. research on “Enabling Enterprising Engineers” and featuring work by HKS architects and Enfinffers for Overseas Development (EFOD).

Thomas Empson delivering welcomes, introductions, and cutting-edge research.

Thomas’ Ph.D. research project is coming together beautifully and he will be presenting his viva (=defending his dissertation) in August. We got a sneak preview today! This event, the LSBU Provost, Professor Pat Bailey, told us at the 9.30am Welcome and Introduction is the largest online event that LSBU has ever hosted. Thomas is one of the two main organizers for this LSBU conference. He’s done this alongside his research work.

As I’m working on various projects throughout the day (including our own online EER Meet Up for tomorrow afternoon), I’ve tuned in and out of the LSBU event. However, I was there “with bells on” for the 11.30am session led by Thomas!

The topic was “Creating Sustainable Development: Measuring the positive ecological, economic and social impact of the Katchumbala Maternity Unit.” Thomas presented his research and then hosted two high-profile panelists: Dan Flower, a Design Director for HKS Architects, and his dad, Ian Flower OBE and Founder of Engineers for Overseas Development (EFOD).

Thomas has been studying aspects of creativity and (environmental, social and economic) sustainability. He has evaluated several case study projects to assess creative practices, processes, outputs, and impacts. The case study he showed today was for the Katchumbala Maternity Unit in Uganda.

Thomas hosted two high-powered designer/activists who made this hospital a reality. It’s a father-son duo with an engineer dad and architect son.

The Hospital generated many positive environmental, social, and economic benefits.

There were also benefits ot the organizations involved:

Thomas has studied creativity within this project and has created a number of really helpful and useful models for assessing sustainable creativity. I’ll share those models with you later, as they are a significant contribution to the knowledge base and have been tested through empirical research.

Today, the audience got a sneak peek at these models and won’t have to wait until Thomas’ viva.

LSBU has loads of interesting sessions planned for the week–why not join in to learn more?

Maria Carreira’s PhD viva on Learning Spaces in the University Context

Maria's viva 5What an honor to be part of the day a young scholar gets her wings, so to speak, by earning her PhD! Last week I travelled to Lisbon to attend the viva (i.e., PhD defense) of Maria Alexandre Bacharel Oliveira Carreira. I had met with Maria on both of my two prior visits to the Instituto Superior Técnico at the Universidade de Lisboa. I really enjoyed watching her work unfold.

This time, I was a member of her evaluation panel. I curled up with her thesis each night while I was in Brussels. Preparing for this panel event took many hours for me–but it took five years for Maria! During that time Maria gave birth to two children, but that didn’t slow her down much. She kept plugging away at her research.

She conducted extensive analysis of spaces that support teaching and learning. The title of her dissertation (which in Europe is called a thesis) is In-between Formality and Informality: Learning Spaces in University Context. The European term “viva voice” (meaning “live voice”) is so much nicer than the term “dissertation defense” used in the States.

Maria's viva 00After 2.5 hours of presenting her work and answering questions–posed by the panel of 6 experts (I myself had 40 minutes to talk about her work and ask questions of her)–Maria and her many family members and friends who had come to the event left the room. The panel discussed the merits of the work, deliberated, then invited Maria and the crowd back into the presentation room to pronounce her a PhD with distinction. We all went for a celebratory luncheon in the afternoon.

Once Maria has submitted the final version of her thesis, I’ll try to post a link. In the meantime, you may be interested to read two of the articles I have written that have to do with topics in her thesis.

The first is about how the design of school buildings can enhance learning and help us achieve environmental sustainability:

 

Chance, S. and Cole, J. T. (2014) “Enhancing Building Performance and Environmental Learning: A Case Study of Virginia Beach Public Schools ” City Public Schools. Book chapter from the book entitled “Marketing the green school: form, function and the future.

The second is about university buildings. It also discusses how buildings can promote learning, by serving as examples, modeling values, and getting people engaged. It’s about environmental sustainability and how LEED has become an example of organizational learning (i.e., a big organization that effectively learns from past experience, using it to improve future performance):

Chance, S. (2012) Planning for Environmental Sustainability : Learning from LEED and the USGBCPlanning for Higher Education, Vol. 41, No. 1, Oct-Dec, 2012.

Dissertation 101: Picking Top-Notch Advisors

Dr. Pamela Eddy -- a fabulous advisor and role model.

Dr. Pamela Eddy — a fabulous advisor and role model.

You know those horror stories you hear about PhD students, endlessly stalled in their work?  Although many are true, they don’t have to be!  With careful consideration a little luck, it is possible to find excellent advisors who have the goal of helping you succeed.

When I was completing my dissertation, I was blessed to have two exceptional advisors, Dr. Pam Eddy and Dr. David Leslie, who were there to help me from start to finish. I also benefited from some sage advice from Drs. Michael DiPaola and Tom Ward.

All these people were instrumental in the timely completion of my dissertation. These folks wanted me to succeed. And, all these people knew how to let a self-starter like me start, and finish!

I often heard them say, “the best dissertation is a done dissertation” and “Keep It Simple (Stupid).” I think the KISS principle should apply to far more dissertation studies than it typically does.

My advisors knew that the main points of a dissertation at the PhD level are (1) for the candidate to demonstrate s/he is capable of producing quality, doctoral level research and (2) to contribute something new to the pool of human knowledge.  It is not, necessarily, to write the most eloquent piece of prose known to mankind or to solve world hunger in one fell swoop.

Thankfully, my advisors didn’t micromanage my work or act as though the fate of the world hung on each word I composed.

Dave Chance and Pam Eddy shooting the breeze at Bangkok Garden in Williamsburg, Va.

Dave Chance and Pam Eddy shooting the breeze at Bangkok Garden in Williamsburg, Va.

But make no bones about it: quality counts.

I finished my dissertation swiftly, but I also produced a piece of work that won an Outstanding Dissertation Award from the International Society for Educational Planning (ISEP), got published in a top-tier journal, and was downloaded more than 800 times over the course of a few weeks from the Society of College and University Planners (SCUP) website.

Moreover, my advisors nominated me for my school’s Award of Excellence — which I was truly thrilled to receive.  (Donors to W&M even provided a cash prize, and I used the award money to buy my graduation regalia.  I’ll enjoy wearing that each year, with pride, at Hampton University’s commencement and gradation ceremonies.)

So my advice is: when you’re selecting your thesis/dissertation advisors, take care.  Make sure to select accomplished people who are interested in and reasonably knowledgeable about your topic and who can keep things in good perspective.

Many candidates fall into traps I learned early on (I’ve completed two theses — one for my Bachelor of Architecture degree and one for my Masters of Architecture — as well as the doctoral dissertation).  In the first of these experiences, I wasn’t careful enough about editing my advising team. There were too many “cooks in the kitchen,” so to speak. After five frustrating weeks trying to please four different advisors who had somewhat competing agendas, I took matters into my own hands. I learned to trust my own judgement and ask for targeted advice when and where I needed it. I finished that B.Arch. thesis on time, something rare in my architecture school back then. I took exactly the same amount of time, 8 months, to write my PhD dissertation. In both cases, I’d laid much of the groundwork (such as review of the literature) ahead of time, so as to start the race on solid footing.

For the past 14 years, I’ve advised students who are completing architectural theses themselves.  I know I’ve inadvertently sent some of them scurrying in circles, but I’ve also tried hard not to be that type of advisor.  I’ve learned a great deal over time, and I’ve developed skill in thesis advising. Today, I feel quite confident in my ability to support students in their thesis work.  Many of my students have won awards and presented their thesis work in professional forums. And with Facebook, I get to watch them grown into skilled architects over time… what a joy!

I have this to say that students approaching their capstone projects: be on the alert for signs that the person you’re about to invite to your committee might fail to see what’s in your best interest. It seems to me that some dissertation/thesis advisors view each candidate’s work as an immediate reflection of themselves (in that realm, I’m sometimes at fault myself). Some advisors want every aspect of the work done the way they would do it themselves (and that’s not the case for me). I have seen instances where advisors haven’t been able to stretch their minds far enough to understand what the candidate is trying to achieve or how s/he is going about it, even though the approach appears valid to me. In some cases supervisors act as if the student’s dissertation/thesis is the single most important piece of research ever conducted. They go overboard belaboring every aspect. Although I know there are times when such tinkering is warranted, I have also seen some professors reject work and/or demand countless revisions regardless of the quality of work they have been presented for review.  Yes, they want the work to be the best it can possibly be… but the work this student does later in life is likely to be far more important (as long as they can meet the required quality thresholds for their degree level).

So keep in mind: it’s crucial to find people who respect your abilities and want to share the joys as well as the pains of critical investigation with you. People who want to help you achieve and succeed. And people who won’t let their own egos drive your project.

Thank God I found those people!  To this day, I maintain personal ties with Drs. Leslie and Eddy.

Dr. Eddy, for instance, helped me build connections in Ireland that helped me land my Fulbright.  She’ll be visiting me in Dublin for a couple of weeks this spring and I can’t wait!

In the meantime, we recently enjoyed a little time together with our “Daves” over dinner in Williamsburg.

Dave Pape, Shannon and Dave Chance, and Pam Eddy.  (Yes, there are a lot of doctors in the house!)

Dave Pape, Shannon and Dave Chance, and Pam Eddy. (Yes, there are a lot of doctors in the house!)

Green Know-How

Simon McGuinness asked me to speak about LEED with his Architectural Technology class.

Simon McGuinness asked me to speak about LEED with his Architectural Technology class.

65% of Ireland’s architects are unemployed today.  Shocking.  And sad.

Today, I got to speak to a room-full of these architects and architectural technologists.  They come to DIT once a week — from all over Ireland — to learn about sustainability.

To be eligible to take this course, a person has to be receiving some form of unemployment assistance.  The government funds this program as a way to infuse knowledge about green building into the community and help re-train this group so they can help address pressing social needs.

And what a fantastic audience!  I was so caught up in the dialogue that I forgot to take a picture for you.  I believe everyone in the room was older than me and likely had much more field experience.

And they were fully engaged, interested, and attentive!  Full of energy and questions!

The teacher of the course, Simon McGuinness, had asked me talk about the nuts and bolts of documenting projects using the LEED Green Building rating system.  That can be a very dry subject.  But they took it in with enthusiasm.

During the one-hour talk, I got the chance to share some of the findings of my dissertation and the recommendations I made in the article I just published in Planning for Higher Education.  I’ve included a gallery of those slides, below.  Please see the article for details.  (It got over 800 downloads!)